Type 3 Deiodinase: Role in Cancer Growth, Stemness, and Metabolism
نویسندگان
چکیده
Deiodinases are selenoenzymes that catalyze thyroid hormones (THs) activation (type 1 and type 2, D1 and D2, respectively) or inactivation (type 3, D3). THs are essential for proper body development and cellular differentiation. Their intra- and extra-cellular concentrations are tightly regulated by deiodinases with a pre-receptorial control thus generating active or inactive form of THs. Changes in deiodinases expression are anatomically and temporally regulated and influence the downstream TH signaling. D3 overexpression is a feature of proliferative tissues such as embryo or cancer tissues. The enhanced TH degradation by D3 induces a local hypothyroidism, thus inhibiting THs transcriptional activity. Of note, overexpression of D3 is a feature of several highly proliferative cancers. In this paper, we review recent advances in the role of D3 in cancer growth, stemness, and metabolic phenotype. In particular, we focus on the main signaling pathways that result in the overexpression of D3 in cancer cells and are known to be relevant to cancer development, progression, and recurrence. We also discuss the potential role of D3 in cancer stem cells metabolic phenotype, an emerging topic in cancer research.
منابع مشابه
Deiodinase Knockdown during Early Zebrafish Development Affects Growth, Development, Energy Metabolism, Motility and Phototransduction
Thyroid hormone (TH) balance is essential for vertebrate development. Deiodinase type 1 (D1) and type 2 (D2) increase and deiodinase type 3 (D3) decreases local intracellular levels of T3, the most important active TH. The role of deiodinase-mediated TH effects in early vertebrate development is only partially understood. Therefore, we investigated the role of deiodinases during early developme...
متن کاملLinkage between Large intergenic non-coding RNA regulator of reprogramming and Stemness State in Samples with Helicobacter pylori Infection of Gastric Cancer Cells
Background: Long noncoding RNAs (lncRNAs), as non-protein coding transcripts, play key roles in tumor progression and stemness state in many malignancies, as their aberrant expression has been found in gastric cancer (GC) as one of the most common cancer worldwide. LINC-ROR (large intergenic noncoding RNA regulator of reprogramming) identified as an involved lncRNA in human malignancies, howeve...
متن کاملبررسی اثر مهاری سیلیبینین بر رشد و خواص بنیادینگی مامواسفیرهای حاصل از سلولهای رده MCF-7
Introduction: The cancer stem cells are the small population of cells in tumor tissue with the ability of self-renew and differentiation into other tumor cells. Targeting these cells has great importance in the treatment of cancer and prevent cancer recurrence. Milk thistle is the plant of the Asteraceae with the scientific name of Silybum Marianum. However there is no report about the effect o...
متن کاملYM155 as an inhibitor of cancer stemness simultaneously inhibits autophosphorylation of epidermal growth factor receptor and G9a-mediated stemness in lung cancer cells
Cancer stem cell survival is the leading factor for tumor recurrence after tumor-suppressive treatments. Therefore, specific and efficient inhibitors of cancer stemness must be discovered for reducing tumor recurrence. YM155 has been indicated to significantly reduce stemness-derived tumorsphere formation. However, the pharmaceutical mechanism of YM155 against cancer stemness is unclear. This s...
متن کاملInvestigation on metabolism of cisplatin resistant ovarian cancer using a genome scale metabolic model and microarray data
Objective(s): Many cancer cells show significant resistance to drugs that kill drug sensitive cancer cells and non-tumor cells and such resistance might be a consequence of the difference in metabolism. Therefore, studying the metabolism of drug resistant cancer cells and comparison with drug sensitive and normal cell lines is the objective of this research. Material and Methods:Metabolism of c...
متن کامل